Для того чтобы познать суть необъятного, мне нужна всего одна вечность.
Старый миф о шмеле отображает наше невежество
Метью Ванхорн
“Леди и джентльмены, пожалуйста, займите свои места, и пристегните ремни безопасности. Мы взлетаем,” – приятным голосом объявляет стюардесса через систему внутренней связи. Двигатель самолёта начинает гудеть. Вы чувствуете лёгкий толчок, и самолёт начинает ехать по взлётно-посадочной полосе. Вы взволнованно хватаетесь за своё сиденье в нервном предвкушении небывалого ощущения, которое вы собираетесь испытать. Несясь по взлётной полосе, самолёт быстро набирает скорость. Когда самолёт отрывается от земли, ваш желудок тяжелеет, и вы испытываете неприятные ощущения. Земля становится всё меньше и меньше, и вы плывёте над ней в белом море облаков.Вам знакомо всё это? Вероятно, всё вышесказанное напоминает вам о вашем первом пребывании на борту самолёта, разве что эти воспоминания омрачены вашей склонностью к морской болезни или "ужасной" боязнью полетов. Вы когда-нибудь задумывались, благодаря чему самолёт может летать? Физики и инженеры разбираются в этом очень хорошо. Они изучали сложную конструкцию аэродинамической поверхности и крыла. Округлая передняя кромка крыла и крутая задняя кромка, движимые тягой двигателя мощностью более 63300 фунтов, обеспечивают эффективную подъемную силу для самолёта.
А теперь представьте, что самолёт лишен какого-либо двигателя, с помощью которого он может заводиться и лететь. Как бы в таком случае самолёт мог бы летать? Самолёт, у которого отсутствуют двигатели, сам по себе летать не может. Всё это подводит нас к теме нашей статьи, а именно к рассказу о шмеле. Теоретически, как говорят учёные, шмель не может летать и должен оставаться на земле, так же как и гигантский авиалайнер без двигателя. Принимая во внимание тот факт, что основное уравнение, которое лежит в основе аэродинамики полёта, должно быть одинаковым как для летающих насекомых, так и для самолётов, просто невозможно объяснить, как шмелям удаётся летать. Крылья шмеля создают больше подъёмной силы, чем предсказывают учёные с помощью традиционного аэродинамического анализа. Возвратно-поступательное движение крыльев делает аэродинамику полёта насекомых невероятно неустойчивой и сложной для анализа.
Шмели – это мохнатые и шумные пчелы, размером от ½ до 1 дюйма. Крылья шмеля очень маленькие по отношению к телу. Самолёт, построенный с соблюдением таких же пропорций, как у шмеля, никогда бы не оторвался от земли. Но шмели не похожи на самолёты. Они скорее похожи на вертолёты с гибкими лопастями. Подвижная аэродинамическая поверхность генерирует больше подъемной силы, чем жесткое и зафиксированное крыло. Однако страус, который может создать подвижную аэродинамическую поверхность, так никогда и не оторвётся от земли. Таким образом, учёные находились в очень затруднительном положении относительно того, каким же образом шмели поднимаются в воздух.
Физики-теоретики использовали по отношению шмелей теории, применимые для полёта Боинга 747, и определили, что они не должны летать. Однако это вовсе не “доказывает” того, что шмели не могут летать; это просто означает, что физики используют неверное уравнение. Иварс Петерсон попытался защитить учёных, утверждая:
“Проблема на самом деле заключается не в том, что учёные не правы, а в том, что существует значительное различие между предметом и математической моделью этого предмета”.
Это на вид неопределенное утверждение является следствием следующей веской причины: “Определенная математическая модель не может описать механизм полёта шмеля и совершенно не подходит для данной цели” (1997). В полёте шмеля и в самом деле нет ничего простого.
читать дальше
Ссылки и примечания
1. Дикинсон, Майкл (2001), “Объяснение загадки полета насекомых”, [On-line], URL: www.sciam.com/article.cfm?articleID=000EE5B1-DC....
2. Мэкфи, Кона (2001) “Жужжание шмелей”, [On-line], URL: pass.maths.org.uk/issue17/news/bumble.
3. Петерсон, Иварс (1997), “Полёт шмеля”, [On-line], URL: www.maa.org/mathland/mathland_3_31.html.
4. Сегелкен, Роджер (2000), “Шмели, наконец, дали разрешение на взлёт”, [On-line], URL: www.news.cornell.edu/releases/March00/APS_Wang.....
www.origins.org.ua/page.php?id_story=356
Метью Ванхорн
“Леди и джентльмены, пожалуйста, займите свои места, и пристегните ремни безопасности. Мы взлетаем,” – приятным голосом объявляет стюардесса через систему внутренней связи. Двигатель самолёта начинает гудеть. Вы чувствуете лёгкий толчок, и самолёт начинает ехать по взлётно-посадочной полосе. Вы взволнованно хватаетесь за своё сиденье в нервном предвкушении небывалого ощущения, которое вы собираетесь испытать. Несясь по взлётной полосе, самолёт быстро набирает скорость. Когда самолёт отрывается от земли, ваш желудок тяжелеет, и вы испытываете неприятные ощущения. Земля становится всё меньше и меньше, и вы плывёте над ней в белом море облаков.Вам знакомо всё это? Вероятно, всё вышесказанное напоминает вам о вашем первом пребывании на борту самолёта, разве что эти воспоминания омрачены вашей склонностью к морской болезни или "ужасной" боязнью полетов. Вы когда-нибудь задумывались, благодаря чему самолёт может летать? Физики и инженеры разбираются в этом очень хорошо. Они изучали сложную конструкцию аэродинамической поверхности и крыла. Округлая передняя кромка крыла и крутая задняя кромка, движимые тягой двигателя мощностью более 63300 фунтов, обеспечивают эффективную подъемную силу для самолёта.
А теперь представьте, что самолёт лишен какого-либо двигателя, с помощью которого он может заводиться и лететь. Как бы в таком случае самолёт мог бы летать? Самолёт, у которого отсутствуют двигатели, сам по себе летать не может. Всё это подводит нас к теме нашей статьи, а именно к рассказу о шмеле. Теоретически, как говорят учёные, шмель не может летать и должен оставаться на земле, так же как и гигантский авиалайнер без двигателя. Принимая во внимание тот факт, что основное уравнение, которое лежит в основе аэродинамики полёта, должно быть одинаковым как для летающих насекомых, так и для самолётов, просто невозможно объяснить, как шмелям удаётся летать. Крылья шмеля создают больше подъёмной силы, чем предсказывают учёные с помощью традиционного аэродинамического анализа. Возвратно-поступательное движение крыльев делает аэродинамику полёта насекомых невероятно неустойчивой и сложной для анализа.
Шмели – это мохнатые и шумные пчелы, размером от ½ до 1 дюйма. Крылья шмеля очень маленькие по отношению к телу. Самолёт, построенный с соблюдением таких же пропорций, как у шмеля, никогда бы не оторвался от земли. Но шмели не похожи на самолёты. Они скорее похожи на вертолёты с гибкими лопастями. Подвижная аэродинамическая поверхность генерирует больше подъемной силы, чем жесткое и зафиксированное крыло. Однако страус, который может создать подвижную аэродинамическую поверхность, так никогда и не оторвётся от земли. Таким образом, учёные находились в очень затруднительном положении относительно того, каким же образом шмели поднимаются в воздух.
Физики-теоретики использовали по отношению шмелей теории, применимые для полёта Боинга 747, и определили, что они не должны летать. Однако это вовсе не “доказывает” того, что шмели не могут летать; это просто означает, что физики используют неверное уравнение. Иварс Петерсон попытался защитить учёных, утверждая:
“Проблема на самом деле заключается не в том, что учёные не правы, а в том, что существует значительное различие между предметом и математической моделью этого предмета”.
Это на вид неопределенное утверждение является следствием следующей веской причины: “Определенная математическая модель не может описать механизм полёта шмеля и совершенно не подходит для данной цели” (1997). В полёте шмеля и в самом деле нет ничего простого.
читать дальше
Ссылки и примечания
1. Дикинсон, Майкл (2001), “Объяснение загадки полета насекомых”, [On-line], URL: www.sciam.com/article.cfm?articleID=000EE5B1-DC....
2. Мэкфи, Кона (2001) “Жужжание шмелей”, [On-line], URL: pass.maths.org.uk/issue17/news/bumble.
3. Петерсон, Иварс (1997), “Полёт шмеля”, [On-line], URL: www.maa.org/mathland/mathland_3_31.html.
4. Сегелкен, Роджер (2000), “Шмели, наконец, дали разрешение на взлёт”, [On-line], URL: www.news.cornell.edu/releases/March00/APS_Wang.....
www.origins.org.ua/page.php?id_story=356